UTILIZAÇÃO DE RESÍDUOS SÓLIDOS DO CORTE DE MÁRMORE NA PRODUÇÃO DE PELOTAS DE INTERESSE SIDERÚRGICO

José Roberto de Oliveira¹, Leandro Munhoz de Avellar²

Resumo: Este projeto propõe um estudo da possibilidade tecnológica da utilização de resíduos sólidos, gerados durante a etapa de corte de mármore, na produção de pelotas de interesse siderúrgico. Tais resíduos possuem teores elevados de calcário e de cal hidratada, grande parte com granulometría inferior a 150µm e, conseqüentemente, possuem o potencial de serem utilizados na produção de pelotas de interesse siderúrgico.

Palavras-chave: Mármore, Resíduos, Pelotas e Calcário.

INTRODUÇÃO

O estado do Espírito Santo é responsável por praticamente 60% da produção brasileira de rochas ornamentais, sendo deste total 20% de mármore. Durante a produção de rochas ornamentais, uma grande quantidade de resíduos sólidos, com granulometria inferior a 150µm, é gerada. Tais resíduos possuem teores elevados de calcário e de cal hidratada e, conseqüentemente, possuem o potencial de serem utilizados na produção de pelotas de interesse siderúrgico. Na fabricação destas pelotas além do minério de ferro, que é a prima matéria principal, são usados principalmente; calcário, que é formado por CaCO₃, e MgCO₃(como fonte de CaO e MgO) e cal hidratada em diferentes proporções dependendo do tipo de pelota a ser fabricada. Desta maneira, tais resíduos possuem o potencial de serem utilizados na produção de Pelotas de interesse siderúrgico,

O presente trabalho propõe um estudo da possibilidade tecnológica da utilização do resíduo de mármore na produção de pelotas de interesse siderúrgico, objetivando a diminuição da extração de calcário, no estado do Espírito Santo, e, consequentemente, a preservação do meio-ambiente.

RESULTADOS E DISCUSSÃO

1 – Caracterização Fisica e Quimica dos resíduos.

Primeiramente foi realizado a análise quimica do mármore no laboratório do IFES. Na tabela 1 a seguir pode-se conferir os resultados.

Tabela 1 – Resultado da Análise Química

		Al_2O_3			
Mármore tipo 1.	3,2%	8,6%	56%	25%	0,41%

Os resultados obtidos na analise são satisfatórios, pois o teor de CaO no residuo de mármore obteve o teor de 56 %, podemos chegar a esta conclusão pois neste projeto o interesse é substituir o calcario para fazer as pelotas (que possui o teor minimo de CaO de 50%), pelo resíduo de mármore.

Logo depois foi realizado a análise granulométrica do material utilizado. Na tabela 2 apresentada logo abaixo, pode-se observar então as faixas granulométricas dos material utilizado.

Tabela 2: Análise granulométrica do mármore

Analise do Mármore				
Peneiras (mm)	Peso (gramas)	% em peso		
>1,2	0.00g	0.00%		
1.2mm	0.5052g	0.05052%		
0,6mm	1.1241g	0.11241%		
0,3mm	4.8273g	0.48273%		
0.15mm	4.594g	0.4594%		
0.075mm	972.80g	97.8%		
Massa Total Utilizada	1000g			
Perda de material no processo	1.6g			

¹ Ifes – Campus de Vitória – Coordenadoria de Metalurgia – Avenida Vitória – 29.040-780 - Vitória – ES – iroberto@ifes.edu.br

² Ifes – Campus de Vitória – Coordenadoria de Metalurgia – Avenida Vitória – 29.040-780 - Vitória – ES – leandro engmetal@yahoo.com.br

Através dos resultados da análise granulométrica, pode-se observar que a maior parte do resíduo ficou retida na peneira de 0,075 mm, o que significa que a reação poderá acontecer de forma mais rápida devido ao tamanho das partículas.

Depois foi obtido a densidade real do resíduo através de um picnômetro, que é um aparelho que fornece a densidade real de sólidos e líquidos.

Tabela 3 – Densidade Real do Resíduo

Densidade Real do	1 700 g/om3	
Mármore	1,798 g/cm ³	

2 – Preparação da Mistura.

Já com analise quimica e granulométrica concluida, foi preparado 5Kg de mistura de acordo com a tabela 4, e depois feita a homogeinização no laboratório do IFES.

Tabela 4 – Dosagem de Matéria Prima

Matéria Prima	Dosagem Tipica
Resíduo de Mármore	55 g
Bentonita	12 g
Cal Hidratada	140 g
Polpa de Ferro	4790 g
Total	5000g

3 – Etapa de Pelotamento

Após a mistura as pelotas foram feitas em um disco pelotizador disponibilizado no IFES. Nesta etapa foi controlado fatores como umidade da mistura e granulometria afim de obter pelotas de melhores qualidades.

4 - Etapa de Queima

Para conferir a pelota alta resistência mecânica e propriedades metalúrgicas adequadas ao uso nos reatores de redução foi feita a etapa de queima. A tabela 5 mosta como foi feito esta etapa em um forno elétrico do IFES.

Tabela 5 – Processo de resistência em um forno elétrico

Etapa	Temp. (℃)	Tempo de Permanência
Secagem	300-350	10' 00"
Pré-Queima	600-900	10' 00"
Queima	1300-1350	15' 00"
Pós-Queima	900-1000	5' 00"
Resfriament	80-150	0' 00"
0		

CONCLUSÃO

Os resultados obtidos através de analises e testes para o resíduo de mármore são satisfatório, pois tanto a analise quimica, granulométrica correspondem na faixa desejada para se fazer pelota siderurgica. Além disso os testes de compressão da pelota deram satisfatórios e conclui-se que as pelotas que foram feitas com residuos de mármore são utilizaveis na siderurgia.

REFERÊNCIAS

[1] MOURA, W. A.; GONÇALVES, J. P.; LEITE, R. S.. Utilização do resíduo de corte de mármore e granito em argamassas de revestimento e confecção de lajotas para piso. Feira de Santana — Bahia, 2002. p. 49-61. Disponível em:

http://www.uefs.br/sitientibus/tecnologia26/utilizaçãodoresiduodecortedemarmore.pdf>.

Acesso em: 21 dez. 2004.

[2] REIS, W.L.C. Produção piloto de pelotas a partir da lama fina de aciaria LD e óxido de ferro sintético, gerado na decapagem ácida da CSN. XXXVII Seminário de Aciaria – Internacional, 21 a 24 de maio de 2006, Porto Alegre, RS, Brasil.

[3] MARTINS, J. **Procedimentos para avaliação de aglomerantes na pelotização.** ENTMME / VII MSHMT, novembro de 2007, Ouro Preto, MG, Brasil.